[1] Fengmei Bai, Libo Yin, Wei Zhao, Hongwei Zhou, Meng Song*, Yanchun Liu, Xianghua Liu. Deformational behavior of face-centered cubic (FCC) phase in high-pure titanium[J]. Materials Science and Engineering: A, 2021, 800: 140287. [2] Fengmei Bai, Yanyan Li, Jia Wang, Xianghua Liu, Jinxiu Fang, Zhenyi Huang, Meng Song*. Structural Characterization of Low Carbon Foil by Asymmetrical Rolling[C]. Materials Science Forum, 2019,960(58-61) [3] Meng Song*, Libo Yin, Fengmei Bai, et al. Size Effect of Ultra Pure Ti Thin Strip under Asymmetrical Rolling[J]. IOP Conference Series: Materials Science and Engineering, 2020,772:012087 [4] Meng,Song, Xianghua Liu, lizhong Liu, et al. Size Effect on Mechanical Properties and Texture of Pure Copper Foil by Cold Rolling [J]. Materials, 2017, 10(5) , 538. [5] Meng Song, Xianghua Liu, Xin Liu, et al. Ultra-Fine Microstructure and Texture Evolution of Aluminum Foil by Asymmetrical Rolling [J]. Journal of Central South University, 2017, 24(11): 2783-2792. (SCI, IF:0.657) [6] Meng Song, Xianghua Liu., Delin Tang. Texture Evolution of Commercially Pure Copper during Ultra-Thin Strip Rolling [J]. Advanced Materials Research, 2014, 941-944: 1532-1536. [7] 宋孟,刘相华,孙祥坤等.单层晶金属极薄带的制备与尺寸效应研究 [J]. 材料热处理学报, 2016(S1), 5-11. [8] 宋孟, 刘相华, 孙祥坤. 工业纯铝极薄带异步轧制过程中的织构演变 [J]. 武汉科技大学学报, 2016, 39(1): 36-40. [9] 刘相华, 宋孟, 孙祥坤等. 极薄带轧制研究与应用进展 [J]. 机械工程学报, 2016, 49(6):198-206. [10] Delin.Tang, Xianghua Liu, Meng Song, et al. Experimental and theoretical study on minimum achievable foil thickness during asymmetric rolling [J]. PLoS One, 2014, 9(9): e106637 [11] Xin Liu , Xianghua Liu , Meng Song , et al. Theoretical analysis of minimum metal foil thickness achievable by asymmetric rolling with fixed identical roll diameters [J]. Transactions of Nonferrous Metals Society of China, 2016, 26(2): 501-507. [12] Qingbo Yu, Xianghua Liu, Ying Sun, Meng Song. Extreme extensibility and size effects of high-carbon martensitic steel subjected to micro-rolling [J]. Scientia Sinica Technologica, 2015, 45(11): 1187. [13] Fengmei Bai, Xin Ye, HongYan Zhang, Hongwei Zhou*, Meng Song, et al.A significant increase in the hardness of nanotwinned titanium alloys prepared via the martensitic phase transformation, Materials letters, 2019, 255: 126507. [14] Fengmei Bai, Hongwei Zhou*, Xianghua Liu*, Meng Song, et al. Masing behavior and microstructural change of quenched and tempered high-Strength steel under low-cycle fatigue, Acta Metallurgica Sinica (English Letters), 2019,32(11):1346-1354. |
[1] 宋孟,李妍妍,白凤梅,黄贞益,刘相华. 一种深筒件防起皱拉深模具和工艺, 专利号:ZL201910754275.7 ; [2] 宋孟,尹理波,白凤梅,江杰,李妍妍,黄贞益,刘相华. 一种制备高强度极薄带的组合成形方法, 专利号:ZL201910986061.2; [3] 宋孟,尹理波,白凤梅,江杰,李妍妍,黄贞益,刘相华. 一种电子级低氧超高纯钛极薄带的制备方法,专利号:ZL201910985968.7; [4] 宋孟,李妍妍,白凤梅,黄贞益,刘相华. 一种深筒件高减薄率拉深工艺,专利号:ZL201911031829.7; [5] 宋孟,李妍妍,白凤梅,黄贞益,刘相华. 一种深筒件拉深模具和高速拉深工艺,专利号:ZL201911030960.1; [6] 刘相华,宋孟,缪书昆,孙祥坤,冯禄。一种镁及镁合金极薄带的轧制方法,专利号:ZL201510541593.7; [7] 刘相华,宋孟,孙祥坤,陈守东,邵云云,冯禄. 一种纳米晶金属极薄带的制备方法,专利号:ZL201510509875.9; [8] 刘立忠,宋孟,于庆波,刘相华,孙祥坤,缪书昆. 一种多层异种金属复合极薄带的制备方法,专利号:ZL201510541165.4; [9] 刘立忠,宋孟,刘相华,缪书昆,孙祥坤,邵云云. 一种多层金属/石墨烯复合极薄带的制备方法,专利号:ZL201510541161.6; [10] 孙祥坤,刘相华,宋孟,汤德林. 一种采用支承辊传动的极薄带轧机及其轧制方法,专利号:ZL201410256700.7; [11] 刘相华,孙祥坤,宋孟,祁俊龙,冯禄,赵阳. 一种金属极薄带轧制过程中张力施加装置及方法,专利号:ZL201510516299.0; [12] 刘相华,孙祥坤,宋孟,闫述,陈守东,祁俊龙. 一种异速比可在线调节的金属极薄带负辊缝轧制方法,专利号:ZL201510514066.7; [13] 刘相华,孙祥坤,宋孟,闫述,冯禄. 一种异速比可在线连续调节的极薄带组合成形轧机,专利号:ZL201510516327.9; [14] 刘相华,黄贞益,宋孟,白凤梅,周红伟. 一种嵌入式筋槽互锁金属轧制复合工艺及其制造系统,专利号:ZL202010137409.3; [15] 刘相华,黄贞益,宋孟,白凤梅,周红伟. 带有嵌入式筋槽互锁的异种金属轧制复合方法,专利号:ZL202010137437.5; [16] 周红伟,白凤梅,宋孟,孙雅馨,刘相华. 一种在高纯钛薄带中制备面心立方相的方法,专利号:ZL202010989118.7; [17] 刘相华,孙祥坤,汤德林,宋孟. 一种极薄带轧机及其轧制方法,专利申请号:ZL201410145807.4; [18] 刘相华,闫述,缪书昆,孙祥坤,宋孟,赵阳. 一种在热镀锌过程中完成碳配分的Q&P钢的制备方法,专利号:ZL201510461123.X; [19] 刘相华,孙祥坤,陈敬琪,徐梓淦,宋孟,赵启林. 一种传动方式可选的金属极薄带轧机及其轧制方法,专利号:ZL201710006846.X。 |