当前位置: 首页 >> 学术活动 >> 正文

冶金工程学院学术报告(十九)


发布时间:2022-03-25        浏览:

报告题目: Sustainable ironmaking via hydrogen-based direct reduction of iron ores 可持续炼铁——氢直接还原铁矿石技术

报告人:马焱博士 材料可持续合成课题组组长、博士生导师

报告时间:2022年4月8日下午3点

报告地点:安徽工业大学秀山校区冶金楼南 302会议室

报告对象:全校感兴趣的教师和学生

邀请人:黄贞益、夏文真

承办单位:安徽省低碳冶金与流程控制工程研究中心、冶金工程学院微纳组织与力学研究所

报告人简介:

Dr.-Ing. Yan Ma is the group leader of Sustainable Synthesis of Materials with Max-Planck-Institut für Eisenforschung (MPIE). He received his doctoral (2019) and master’s (2015) degrees in metallurgical engineering from RWTH Aachen University, and bachelor’s degree (2013) from University of Science and Technology Beijing. He joined MPIE as a postdoctoral researcher in 2020 and was promoted as group leader in 2021. His research interests pertain to fundamental physical and chemical mechanisms in hydrogen-based metallurgical processes, physical metallurgy of ferrous alloys, and high-entropy alloys. He has participated in two top-level national projects: SFB761 ‘Steel - ab initio’ (30M euros) and SPP2006-CCA-HEA (14M euros). Dr. Ma is a holder of Walter Benjamin Position funded by the German Research Foundation. He has published more than 20 papers in top-tier journals including Acta Mater. and Scripta Mater. Dr. Ma has been invited as a reviewer for more than 10 journals including Acta Mater., JMST, and MSEA. He is a member of associate editorial board of Materials Research Letters.

马焱博士是德国马普钢铁研究所(MPIE)材料可持续合成课题组组长、博士生导师、德国研究基金会Walter Benjamin Position获得者。他于2013年在北京科技大学获得学士学位,于2015年和2019年在亚琛工业大学分别获得冶金工程硕士学位和博士学位。2020年加入MPIE博士后,2021年晋升为组长、博士生导师。研究方向为氢基冶金过程的基本物理化学机制、铁合金物理冶金和高熵合金。他参与了两个国家重大项目:SFB761‘Steel - ab initio’(3000万欧元)和SPP2006-CCA-HEA(1400万欧元)。马焱博士在Acta Mater.、Scripta Mater.等期刊上发表论文20余篇。马博士受邀担任了Acta Mater.、JMST、MSEA等10余种期刊的审稿人和Materials Research Letters期刊的副主编。

报告内容:

Fossil-free ironmaking is indispensable for mitigating the massive CO2emissions from the steel industry, accounting for ~7% of the total CO2emissions and thus being the largest single cause of global warming. Hydrogen-based direct reduction (HyDR) of iron ores is one of the most promising techniques in that context. In this talk, the hierarchical nature of HyDR will be revealed, with a special focus on the spatial and temporal evolution of microstructure in this multistep solid-gas reaction. We employed several advanced characterization techniques, such as synchrotron X-ray diffraction, electron backscatter diffraction, and high-resolution computed tomography to investigate the reduction kinetics, phase transformation crystallography, and three-dimensional porosity in this metallurgical process. The underlying reaction mechanisms are further discussed.

钢铁行业二氧化碳排放约占二氧化碳总排放量的7%,是全球变暖的最大单一原因。无化石炼铁对于减少钢铁行业大量二氧化碳排放是必不可少的。其中,氢直接还原铁矿石技术(HyDR)是最有前途的无化石炼铁技术之一。在本次演讲中,将揭示HyDR的基本规律,并特别关注这种多步固-气反应中微观结构在空间和时间上的演变规律。我们采用了同步加速器X射线衍射、电子背散射衍射和高分辨率计算机断层扫描等先进的表征技术,研究了该冶金过程中的还原动力学、相变结晶学和三维孔隙率,并进一步讨论了潜在的反应机制。

上一条:冶金工程学院学术报告(二十) 下一条:冶金工程学院学术报告(十八)

关闭

-->